Home Computer-Aided Joint Space Analysis (CAJSA) of the Proximal-Interphalangeal Joint—Normative Age-Related and Gender Specific Data
Post
Cancel

Computer-Aided Joint Space Analysis (CAJSA) of the Proximal-Interphalangeal Joint—Normative Age-Related and Gender Specific Data

Rationale and Objectives

To provide reference data for computer-aided joint space analysis (CAJSA) based on a semiautomated and computer-aided diagnostic system for the measurement of joint space widths (ie, proximal-interphalangeal joint), considering gender-specific and age-related differences.

Materials and Methods

A total of 869 subjects were enrolled (351 females/518 males) with radiographs of the hand. All participants underwent measurements of joint space distances at the proximal-interphalangeal articulation (JSD-PIP) of the second to fifth finger using CAJSA technology.

Results

The data verify a notable age-related decrease of CAJSA parameters, showing an accentuated age-related joint space narrowing in women. Additionally, males showed a significant wider JSD-PIP (+15.4%) compared with the female cohort for all age groups.

Conclusions

Our data present gender-specific and age-related normative reference values for computer-aided joint space analysis of JSD-PIP and provide a valid and reliable quantification of disease-related joint space narrowing, particularly in patients with osteoarthritis and rheumatoid arthritis involving the peripheral small hand joints.

Osteoarthritis and rheumatoid arthritis are joint-affecting disorders that have worldwide socioeconomic impact. Until relatively recently, measurements of joint space width were taken only of large joints, in particular the hip and knee ( ). However, recent advances in computer-aided diagnosis (CAD) have led to significant improvements in the field of radiologic diagnostic techniques of osteoarthritis and rheumatoid arthritis ( ).

In the last 5 years, two new CAD-systems have been developed for the quantification of metacarpal bone mineral density as well as joint space width of the metacarpal-phalangeal joints. Digital x-ray radiogrammetry (DXR) is a new operator-independent technique, providing automated measurements of cortical bone mineral density on the metacarpals using digitized radiographs ( ). Computer-aided joint space analysis (CAJSA) is a recently developed approach used for semiautomated measurements of joint space distances at the metacarpal-phalangeal articulation (JSD-MCP) of the first to fifth finger ( ).

Get Radiology Tree app to read full this article<

Get Radiology Tree app to read full this article<

Materials and methods

Patients

Get Radiology Tree app to read full this article<

Get Radiology Tree app to read full this article<

Get Radiology Tree app to read full this article<

Methods

Measurement of Joint Space Width (By CAJSA)

Get Radiology Tree app to read full this article<

Figure 1, Screen view of the proximal-interphalangeal joint space by the computer-aided joint space analysis (CAJSA, version 1.3.6; Sectra Sweden). The region of interest (ROI) is semiautomatic positioning by the operator. In the figure, the ROIs are in projection of the proximal-interphalangeal joint II to IV. The software causes a filtering of the edge of the ROI and the distance between the bones is defined as the average distance between the two involved edges.

Get Radiology Tree app to read full this article<

Get Radiology Tree app to read full this article<

Get Radiology Tree app to read full this article<

Short-Term Precision of Joint Space Measurement (by CAJSA)

Get Radiology Tree app to read full this article<

Get Radiology Tree app to read full this article<

JSD-PIP II: 0.83% JSD-PIP III: 0.75% JSD-PIP IV: 0.85% JSD-PIP V: 1.02%

Get Radiology Tree app to read full this article<

Ethics

Get Radiology Tree app to read full this article<

Data Analysis

Get Radiology Tree app to read full this article<

Results

Get Radiology Tree app to read full this article<

Table 1

Normative Values (Mean and Standard Deviation) for Joint Space Distance of the Proximal-Interphalangeal Joint in Women ( n = 351)

Age (years)n JSD (cm) PIP II PIP III PIP IV PIP V PIP Total Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) <10 12 0.19 (0.05) 0.19 (0.05) 0.18 (0.05) 0.16 (0.03) 0.18 (0.05) 10–15 16 0.17 (0.03) 0.16 (0.03) 0.15 (0.03) 0.14 (0.03) 0.16 (0.03) 16–20 42 0.14 (0.02) 0.14 (0.02) 0.12 (0.02) 0.11 (0.02) 0.14 (0.02) 21–25 45 0.13 (0.02) 0.12 (0.03) 0.11 (0.02) 0.10 (0.02) 0.12 (0.02) 26–30 35 0.13 (0.03) 0.12 (0.04) 0.11 (0.03) 0.10 (0.03) 0.12 (0.03) 31–35 32 0.13 (0.02) 0.12 (0.02) 0.11 (0.02) 0.10 (0.01) 0.12 (0.02) 36–40 22 0.12 (0.02) 0.12 (0.02) 0.10 (0.02) 0.10 (0.01) 0.11 (0.02) 41–45 22 0.12 (0.02) 0.11 (0.02) 0.10 (0.02) 0.10 (0.02) 0.11 (0.02) 46–50 24 0.12 (0.03) 0.11 (0.02) 0.10 (0.02) 0.10 (0.01) 0.11 (0.02) 51–55 24 0.11 (0.02) 0.11 (0.02) 0.10 (0.02) 0.09 (0.01) 0.10 (0.02) 56–60 16 0.11 (0.02) 0.11 (0.02) 0.09 (0.02) 0.09 (0.02) 0.10 (0.02) 61–65 11 0.11 (0.02) 0.11 (0.02) 0.09 (0.02) 0.09 (0.02) 0.10 (0.03) 66–70 14 0.10 (0.03) 0.10 (0.02) 0.09 (0.02) 0.09 (0.02) 0.10 (0.02) 71–75 7 0.10 (0.03) 0.10 (0.02) 0.09 (0.02) 0.09 (0.02) 0.10 (0.02) 76–80 9 0.10 (0.03) 0.10 (0.02) 0.09 (0.01) 0.09 (0.02) 0.10 (0.02) 81–85 12 0.10 (0.03) 0.10 (0.03) 0.09 (0.03) 0.09 (0.03) 0.10 (0.03) >86 8 0.10 (0.04) 0.10 (0.03) 0.09 (0.01) 0.09 (0.03) 0.10 (0.03) Total 351 0.12 (0.03) 0.12 (0.03) 0.11 (0.02) 0.10 (0.02) 0.11 (0.02)

JSD-PIP: joint space distance of the proximal-interphalangeal joint in cm; SD = standard deviation.

Table 2

Normative Values (Mean and Standard Deviation) for Joint Space Distance of the Proximal-Interphalangeal Joint in Men ( n = 518)

Age in years_n_ JSD (cm) PIP II PIP III PIP IV PIP V PIP Total Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) <10 15 0.21 (0.06) 0.20 (0.05) 0.20 (0.05) 0.19 (0.05) 0.20 (0.05) 10–15 26 0.19 (0.03) 0.19 (0.03) 0.17 (0.02) 0.15 (0.03) 0.18 (0.03) 16–20 96 0.16 (0.03) 0.16 (0.03) 0.15 (0.03) 0.13 (0.02) 0.15 (0.03) 21–25 82 0.14 (0.02) 0.15 (0.03) 0.13 (0.02) 0.12 (0.02) 0.14 (0.02) 26–30 60 0.14 (0.03) 0.14 (0.03) 0.13 (0.02) 0.12 (0.03) 0.13 (0.03) 31–35 46 0.14 (0.02) 0.14 (0.03) 0.13 (0.02) 0.11 (0.02) 0.13 (0.02) 36–40 38 0.14 (0.03) 0.14 (0.04) 0.12 (0.03) 0.11 (0.02) 0.13 (0.03) 41–45 36 0.13 (0.02) 0.14 (0.03) 0.12 (0.02) 0.10 (0.02) 0.12 (0.02) 46–50 28 0.13 (0.03) 0.14 (0.04) 0.12 (0.03) 0.10 (0.02) 0.12 (0.03) 51–55 20 0.13 (0.04) 0.13 (0.03) 0.12 (0.03) 0.10 (0.02) 0.12 (0.03) 56–60 14 0.12 (0.02) 0.12 (0.02) 0.10 (0.02) 0.09 (0.01) 0.11 (0.02) 61–65 15 0.12 (0.02) 0.12 (0.02) 0.10 (0.02) 0.09 (0.02) 0.11 (0.02) 66–70 12 0.12 (0.03) 0.12 (0.03) 0.10 (0.03) 0.09 (0.02) 0.11 (0.03) 71–75 8 0.12 (0.03) 0.12 (0.03) 0.10 (0.03) 0.09 (0.02) 0.11 (0.03) 76–80 11 0.12 (0.03) 0.11 (0.02) 0.10 (0.01) 0.09 (0.02) 0.11 (0.02) 81–85 3 0.11 (0.02) 0.11 (0.01) 0.10 (0.03) 0.08 (0.02) 0.10 (0.03) >86 8 0.10 (0.02) 0.09 (0.01) 0.08 (0.02) 0.07 (0.02) 0.09 (0.02) Total 518 0.14 (0.03) 0.14 (0.03) 0.12 (0.03) 0.11 (0.02) 0.13 (0.03)

JSD-PIP: joint space distance of the proximal-interphalangeal joint in cm; SD = standard deviation.

Figure 2, Reference curve of joint space distance of the proximal-interphalangeal (JSD-PIP total) and standard deviation (SD) for women ( n = 351).

Figure 3, Reference curve of joint space distance of the proximal-interphalangeal (JSD-PIP total) and standard deviation (SD) for men ( n = 518).

Figure 4, Changes of joint space distance of the proximal-interphalangeal joint (JSD-PIP) regarding the age group younger than age 10 years and older than 86 years in a comparison between women and men: (a) proximal-interphalangeal joint II, (b) proximal-interphalangeal joint III, (c) proximal-interphalangeal joint IV, (d) proximal-interphalangeal joint V, (e) proximal-interphalangeal joint total.

TABLE 3

Age-Related Relative Changes of JSD-PIP Between Men ( n = 518) and Women ( n = 351)

Age in years_n_ Men_n_ Women Reduction in % JSD-PIP total in cm JSD-PIP total in cm Mean (SD) Mean (SD) <10 15 0.20 (0.05) 12 0.18 (0.05) −10.0% ( P < .05) 10–15 26 0.18 (0.03) 16 0.16 (0.03) −11.1% ( P < .01) 16–20 96 0.15 (0.03) 42 0.14 (0.02) −6.7% ( P < .05) 21–25 82 0.14 (0.02) 45 0.12 (0.02) −14.3% ( P < .01) 26–30 60 0.13 (0.03) 35 0.12 (0.03) −7.7% ( P < .05) 31–35 46 0.13 (0.02) 32 0.12 (0.02) −7.7% ( P < .05) 36–40 38 0.13 (0.03) 22 0.11 (0.02) −15.4% ( P < .01) 41–45 36 0.12 (0.02) 22 0.11 (0.02) −8.3% ( P < .05) 46–50 28 0.12 (0.03) 24 0.11 (0.02) −8.3% ( P < .05) 51–55 20 0.12 (0.03) 24 0.10 (0.02) −16.7% ( P < .01) 56–60 14 0.11 (0.02) 16 0.10 (0.02) −9.1% ( P < .05) 61–65 15 0.11 (0.02) 11 0.10 (0.03) −9.1% ( P < .05) 66–70 12 0.11 (0.03) 14 0.10 (0.02) −9.1% ( P < .05) 71–75 8 0.11 (0.03) 7 0.10 (0.02) −9.1% ( P < .05) 76–80 11 0.11 (0.02) 9 0.10 (0.02) −9.1% ( P < .05) 81–85 3 0.10 (0.03) 12 0.10 (0.03) 0% ( P = NS) >86 8 0.09 (0.02) 8 0.10 (0.03) 11.1% ( P < .01)

JSD-PIP: joint space distance of the proximal-interphalangeal joint in cm; SD = standard deviation.

Get Radiology Tree app to read full this article<

Get Radiology Tree app to read full this article<

Get Radiology Tree app to read full this article<

Get Radiology Tree app to read full this article<

Discussion

Get Radiology Tree app to read full this article<

Impact of Short-Term Precision on CAJSA Measurement

Get Radiology Tree app to read full this article<

Comparison of JSD-PIP Regarding Gender and Age

Get Radiology Tree app to read full this article<

Get Radiology Tree app to read full this article<

Clinical Application of the JSD Measurement

Get Radiology Tree app to read full this article<

Get Radiology Tree app to read full this article<

Get Radiology Tree app to read full this article<

Get Radiology Tree app to read full this article<

Get Radiology Tree app to read full this article<

Get Radiology Tree app to read full this article<

Get Radiology Tree app to read full this article<

Get Radiology Tree app to read full this article<

Acknowledgments

Get Radiology Tree app to read full this article<

References

  • 1. Dacre J.E., Huskisson E.C.: The automatic assessment of knee radiographs in osteoarthritis using digital image analysis. Br J Rheumatol 1989; 28: pp. 506-510.

  • 2. Buckland-Wright J.C., MacParlane D.G., Lynch J.A., et. al.: Quantitative microfocal radiography detects changes in OA knee joint space width in patients in placebo controlled trial of NSAID therapy. J Rheumatol 1995; 22: pp. 937-943.

  • 3. Duryea J., Li J., Peterfy C.G., Gordon C., et. al.: Trainable rule-based algorithm for the measurement of joint space width in digital radiographic images of the knee. Med Phys 2000; 27: pp. 580-591.

  • 4. Conrozier T., Jousseaume C.A., Mathieu P., et. al.: Quantitative measurement of joint space narrowing progression in hip osteoarthritis: a longitudinal retrospective study of patients treated by total hip arthroplasty. Br J Rheumatol 1998; 37: pp. 961-968.

  • 5. Böttcher J., Pfeil A., Rosholm A., et. al.: Computerized quantification of joint space narrowing and periarticular demineralization in patients with rheumatoid arthritis based on Digital X-ray Radiogrammetry. Invest Radiol 2006; 41: pp. 36-44.

  • 6. Böttcher J., Malich A., Pfeil A., et. al.: Potential clinical relevance of digital radiogrammetry for quantification of periarticular bone demineralization in patients suffering from rheumatoid arthritis depending on severity and compared with DXA. Eur Radiol 2004; 14: pp. 631-637.

  • 7. Stewart A., Mackenzie L.M., Black A.J., et. al.: Predicting erosive disease in rheumatoid arthritis. Rheumatology 2004; 43: pp. 1561-1564.

  • 8. Böttcher J., Pfeil A., Mentzel H.J., et. al.: Peripheral bone status in rheumatoid arthritis evaluated by Digital X-ray Radiogrammetry (DXR) and compared with multi-site Quantitative Ultrasound (QUS). Calcif Tis Int 2006; 78: pp. 25-34.

  • 9. Jawaid W.B., Crosbie D., Shotton J., et. al.: Use of Digital X-ray radiogrammetry in the assessment of joint damage in rheumatoid arthritis. Ann Rheum Dis 2006; 65: pp. 459-464.

  • 10. Böttcher J., Pfeil A., Rosholm A., et. al.: Digital X-Ray Radiogrammetry combined with semi-automated analysis of joint space distances as a new diagnostic approach in rheumatoid arthritis—a cross-sectional and longitudinal study. Arthritis Rheum 2005; 52: pp. 3850-3859.

  • 11. Böttcher J., Pfeil A., Rosholm A., et. al.: Computerized digital imaging techniques provided by digital radiogrammetry as new diagnostic tool in rheumatoid arthritis. J Digital Imag 2006; 19: pp. 279-288.

  • 12. Larsen A., Thoen J.: Hand radiography of 200 patients with rheumatoid arthritis repeated after an interval of one year. Scand J Rheumatol 1987; 16: pp. 395-401.

  • 13. Kellgren J., Lawrence J.: Radiological assessment of osteoarthrosis. Ann Rheum Dis 1957; 16: pp. 494-502.

  • 14. Felson D.T., Zhang Y.: An update on the epidemiology of knee and hip osteoarthritis with a view to prevention. Arthritis Rheum 1998; 41: pp. 1343-1355.

  • 15. Arokoski J.P.A., Jurvelin J., Vätäinen U., et. al.: Normal and pathological adaptation of articular cartilage to joint loading: review. Scand J Med Sci Sports 2000; 10: pp. 186-198.

  • 16. Sowers M., Lachance L., Hochberg M., et. al.: Radiographically defined osteoarthritis of the hand and knee in young and middle-aged African American and Caucasian women. Osteoarthr Cartilage 2000; 8: pp. 69-77.

  • 17. Chaisson C.E., Zhang Y., Sharma L., et. al.: Higher grip strength increases the risk of incident radiographic osteoarthritis in proximal hand joints. Osteoarthritis Cartilage 2000; 8: pp. S29-S32.

  • 18. Lau E.C., Cooper C., Lam D., et. al.: Factors associated with osteoarthritis of the hip and knee in Hong Kong Chinese: obesity, joint injury and occupational activities. Am J Epidemiol 2000; 152: pp. 855-862.

  • 19. Cooper C., Snow S., McAlindon T.E., et. al.: Risk factors for the incidence and progression of radiographic knee osteoarthritis. Arthritis Rheum 2000; 43: pp. 995-1000.

  • 20. Hochberg M.C., Lethbridge-Cejku M., Plato C.C., et. al.: Factors associated with osteoarthritis of the hand in males: data from the Baltimore Longitudinal Study of Aging. Am J Epidemiol 1991; 134: pp. 1121-1127.

  • 21. Hart D.J., Spector T.D.: The relationship of obesity, fat distribution and osteoarthritis in women in the general population. J Rheumatol 1993; 20: pp. 331-335.

  • 22. Sturmer T., Gunther K.P., Breener H.: Obesity, overweight and patterns of osteoarthritis: the Ulm Osteoarthritis Study. J Clin Epidemiol 2000; 53: pp. 307-313.

  • 23. Haara M.M., Manninen P., Kröger H., et. al.: Osteoarthritis of finger joints in Finns aged 30 or over: prevalence, determinants, and association with mortality. Ann Rheum Dis 2003; 62: pp. 151-158.

  • 24. Lawrence J.S., Bremner J.M., Biers F.: Osteoarthritis. Ann Rheum Dis 1966; 25: pp. 1-24.

  • 25. Mikkelsen W.M., Duff I.F.: Age-sex prevalence of radiographic abnormalities of the joints of the hand, wrist and cervical spine of adult resident of Tecumseh. J Chronic Dis 1970; 23: pp. 151-159.

  • 26. Swanson A.B., Swanson G.G.: Osteoarthritis in the hand. Clin Rheum Dis 1985; 11: pp. 393-419.

  • 27. van Saase J.L.C.M., van Romunde L.K.J., Cats A., et. al.: Epidemiology of osteoarthritis, Zoetermeer survey. Ann Rheum Dis 1989; 48: pp. 271-280.

  • 28. Felson D.T.: The epidemiology of osteoarthritis.Kuettner K.F.Goldberg V.M.Osteoarthritis disorders.1994.American Academic Orthopaedic SurgeonsRosemont, IL:pp. 13-24.

  • 29. Cauley J.A., Kwoh K., Egeland G., et. al.: Serum sex hormones and severity of osteoarthritis of the hand. J Rheumatol 1993; 20: pp. 1170-1175.

  • 30. Oliveria S.A., Felson D.T., Reed J.I., et. al.: Incidence of symptomatic hand, hip, and knee osteoarthritis among patients in a health maintenance organization. Arthritis Rheum 1995; 38: pp. 1134-1141.

  • 31. Hochberg M.C., Lane N.E., Pressman A.R., et. al.: The association of radiographic changes of osteoarthritis of the hand and hip in elderly women. J Rheumatol 1995; 22: pp. 2291-2294.

  • 32. Hart D., Spector T., Egger P., et. al.: Defining osteoarthritis of the hand for epidemiological studies; The Chingford study. Ann Rheum Dis 1994; 53: pp. 220-223.

  • 33. Spector T.D., Cooper C.: Radiological assessment of osteoarthritis: whither Kellgren and Lawrence?. Osteoarthritis Cartilage 1993; 1: pp. 203-206.

  • 34. Gravallese E.M.: Bone destruction in arthritis. Ann Rheum Dis 2002; 61: pp. 84-86.

  • 35. Hansch A., Sauner D., Hilger I., et. al.: Noninvasive diagnosis of arthritis by autofluorescence. Invest Radiol 2003; 38: pp. 578-583.

  • 36. Hansch A., Frey O., Hilger I., et. al.: Diagnosis of arthritis using near-infrared fluorochrome Cy5.5. Invest Radiol 2004; 39: pp. 626-632.

  • 37. Kalla A.A., Meyers O.L., Laubscher R.: Prevalence of metacarpal osteopenia in young rheumatoid arthritis patients. Clin Rheumatol 1995; 14: pp. 617-625.

  • 38. Tan A.L., Grainger A.J., Tanner S.F., et. al.: High-resolution magnetic resonance imaging for the assessment of hand osteoarthritis. Arthritis Rheum 2005; 52: pp. 2355-2365.

  • 39. Berg A., Singer T., Moser E.: High-resolution diffusivity imaging at 3.0 T for the detection of degenerative changes: a trypsin-based arthritis model. Invest Radiol 2003; 38: pp. 460-466.

  • 40. Backhaus M., Kamradt T., Sandrock D., et. al.: Arthritis of the finger joints: a comprehensive approach comparing radiography, scintigraphy, ultrasound, and contrast-enhanced magnetic resonance imaging. Arthritis Rheum 1999; 42: pp. 1232-1245.

  • 41. Sugimoto H., Takeda A., Hyodoh K.: Early-stage rheumatoid arthritis: prospective study of the effectiveness of MR imaging for diagnosis. Radiology 2000; 216: pp. 569-575.

  • 42. Bird P., Conaghan P., Ejbjerg B., et. al.: The development of the EULAR-OMERACT rheumatoid arthritis MRI reference image atlas. Ann Rheum Dis 2005; 64: pp. 8-10.

  • 43. Ostergaard M., Klarlund M., Lassere M., et. al.: Interreader agreement in the assessment of magnetic resonance images of rheumatoid arthritis wrist and finger joints—an international multicenter study. J Rheumatol 2001; 28: pp. 1143-1150.

This post is licensed under CC BY 4.0 by the author.