Rationale and Objectives
A number of studies have reported decreases in fractional anistropy (FA) in amyotrophic lateral sclerosis using diffusion tensor imaging (DTI). The purpose of this study was to perform a meta-analysis in order to estimate the diagnostic test accuracy measures of DTI for the diagnosis of amyotrophic lateral sclerosis (ALS).
Materials and Methods
We searched MEDLINE (1966–April 2011), EMBASE (1999–April 2011), CINAHL (1999–April 2011), and Cochrane (2005–April 2011) databases to identify studies that measured FA in ALS subjects. Human, single-center studies using a DTI region of interest (ROI) or tractography techniques were used to compare FA values along the brain corticospinal tracts between ALS subjects and healthy controls. There were no language restrictions. Independent extraction of articles by 2 authors using predefined data fields including study quality indicators. We identified 30 case-control studies that used region of interest or tractography DTI techniques. We applied binormal receiver operative characteristic (ROC) curve analysis to assign specificity and sensitivity for each study. We applied the bivariate mixed-effects regression model using the Markov Chain Monte Carlo Simulation to calculate summary estimates for the sensitivity and specificity. We used the metan module in Stata, version 11.0, to calculate the area under the ROC curve, diagnostic odds ratio and the test effectiveness summary estimates.
Results
The pooled sensitivity was 0.65 (95% CI 0.61–0.69); the pooled specificity, 0.67 (95% CI 0.63–0.72); the pooled diagnostic odds ratio, 1.88 (95% CI 1.46–2.30); the pooled test effectiveness, 1.04 (95% CI 0.81–1.27); and the pooled area under the ROC curve, 0.76 (95% CI 0.71–0.81). Subanalyses comparing magnetic resonance imaging (MRI) field strength (1.5T vs. 3.0T) and brain location (corticospinal tract average vs. internal capsule) revealed no significant differences in the test accuracy measures. Reference standard used for the diagnosis of ALS was the El Escorial criteria. There was at least moderate heterogeneity between the studies. True study quality is uncertain.
Conclusion
The discriminatory capability of DTI to make a diagnosis of ALS is only modest. There were no significant differences in the diagnostic test accuracy summary estimates with respect to MRI field strength or brain location.
Amyotrophic lateral sclerosis (ALS), a neurodegenerative condition of the corticospinal tract and spinal anterior horn cells, presents with varying degrees of lower motor neuron (LMN) and upper motor neuron (UMN) signs . The incidence of ALS is estimated to be 1.5–2.7 per 100,000 , with a uniformly fatal outcome. Mean survival of 2–4 years after initial diagnosis has been reported . Delay between onset of symptoms and diagnosis reaches one year , which in part is due to an absence of reliable biomarkers. Thus, objective diagnostic tests to establish and corroborate extent of UMN disease are needed .
Diffusion tensor imaging (DTI), an advanced neuroimaging technique, quantifies the local microenvironmental characteristics of water diffusion and evaluates the integrity of white matter fiber tracts . DTI holds promise as a potential biomarker to detect the pathologic changes in ALS, particularly UMN involvement . One of the key measurements provided by DTI is the fractional anisotropy (FA), which provides a scalar measurement of the degree of water diffusion . When the integrity of the white matter tracts is compromised by disease processes that interfere with water diffusion directionality, the FA is reduced . Over the past decade, a number of published studies have described decreases in the FA of the brain’s corticospinal tract in ALS. However, the vast majority of the publications do not report the test accuracy of DTI to differentiate between diseased and nondiseased populations. In particular, the diagnostic value of DTI in patients presenting with possible or “early” signs of ALS is unknown. If the diagnostic test accuracy measures of this advanced neuroimaging technique are adequate, DTI could be used in the clinical workup of suspected ALS similar to electromyography. The purpose of this study was to aggregate the reported data across the different studies and to estimate summary diagnostic test accuracy measures of DTI in the diagnosis of ALS using standard meta-analysis techniques. Our secondary aims were to investigate study-specific sources of heterogeneity in test accuracy measures.
Methods
Study Search Strategy
Get Radiology Tree app to read full this article<
Study Selection
Get Radiology Tree app to read full this article<
Data Extraction
Get Radiology Tree app to read full this article<
Assessment of Methodologic Quality
Get Radiology Tree app to read full this article<
Statistical Analysis
Study level analysis
Get Radiology Tree app to read full this article<
Meta-analysis model
Get Radiology Tree app to read full this article<
Assessment of Heterogeneity
Get Radiology Tree app to read full this article<
Testing for Publication Bias
Get Radiology Tree app to read full this article<
Results
Study Selection
Get Radiology Tree app to read full this article<
Get Radiology Tree app to read full this article<
Study Characteristics
Get Radiology Tree app to read full this article<
Table 1
Individual Study Characteristics
Author Year Origin MRI b-Value Number of Directions DTI Analysis Method Agosta et al 2007 Italy 1.5T 900 12 ROI–visual Agosta et al 2009 Italy 1.5T Unclear Unclear Tractography Aoki et al 2005 Japan 1.5T 1000 13 ROI–tractography Bartels et al 2008 Germany 2.9T 1000 24 ROI–tractography Blain et al 2007 UK 1.5T 1300 64 ROI–visual Blain et al 2011 UK 1.5T 1300 64 Tractography Ciccarelli et al 2006 UK 1.5T 1150 54 Tractography Cosotinni et al 2005 Italy 1.5T 1000 25 ROI–visual Cosottini et al 2010 Italy 1.5T 1000 31 ROI–visual Ellis et al 1999 UK 1.5T 620 7 ROI–visual Filippini et al 2010 UK 3.0T 1000 60 Tractography Garcia et al 2007 Brazil 1.5T 1000 12 ROI–visual Graham et al 2004 UK 1.5T 1200 54 ROI–visual Hong et al 2008 S. Korea 3.0T 1000 25 ROI–tractography Ito et al 2008 Japan 3.0T 700 6 ROI–tractography Karlsborg et al 2004 Denmark 1.5T 550 6 ROI–visual Lombardo et al 2009 Italy 1.5T 1000 25 ROI–visual Metwalli et al 2010 USA 3.0T 1000 64 ROI–visual Nair et al 2010 USA 3.0T 1000 30 ROI–visual Nelles et al 2008 Germany 3.0T 600 16 Tractography Pyra et al 2010 Canada 1.5T 1000 6 ROI–visual Roccatagliata et al 2009 Italy 1.5T 1000 51 ROI–visual Sage et al 2007 Belgium 3.0T 800 16 Tractography Schimrigk et al 2007 Germany 1.5T 1000 6 ROI–tractography Senda et al 2009 Japan 3.0T 700 6 ROI–tractography Valsasina et al 2007 Italy 1.5T 900 12 ROI–visual Wang et al 2006 USA 3.0T 1000 12 ROI–tractography Wong et al 2007 Canada 1.5T 1000 6 ROI–visual Woolley et al 2011 USA 4.0T 800 6 ROI–visual Yin et al 2004 China 1.5T 1000 25 ROI–visual
MRI, magnetic resonance imaging; ROI, region of interest; ROI–tractography, used tractography generated fiber tracts to aid placement of ROIs; ROI–visual, placed ROIs manually using visual inspection of structural imaging; Tractography, used tractography techniques to generate fiber tracts to directly calculate fractional anisotropy values; UK, United Kingdom; USA, United States of America.
Get Radiology Tree app to read full this article<
Diagnostic Test Performance Indexes and Summary Estimates
Get Radiology Tree app to read full this article<
Get Radiology Tree app to read full this article<
Effect of Field Strength on Diagnostic Performance (1.5T versus 3.0T)
Get Radiology Tree app to read full this article<
Table 2
Sensitivity and Specificity Measures
Sensitivity Specificity Overall 0.65 (0.61–0.69) 0.67 (0.63–0.72) 1.5T 0.65 (0.59–0.71) 0.70 (0.61–0.74) 3.0T 0.70 (0.61–0.73) 0.71 (0.57–0.80) CST 0.68 (0.63–0.74) 0.72 (0.68–0.76) IC 0.65 (0.54–0.73) 0.66 (0.60–0.73)
CST, corticospinal tract; IC, internal capsule.
Table 3
Diagnostic Odds Ratio and Test Effectiveness Measures
Diagnostic Odds Ratio Test Effectiveness Overall 1.88 (1.46–2.30) 1.04 (0.81–1.27) 1.5T 2.03 (1.45–2.61) 1.12 (0.80–1.44) 3.0T 1.92 (1.36–2.48) 1.06 (0.75–1.37) CST 2.18 (1.56–2.81) 1.20 (0.86–1.55) IC 1.93 (1.29–2.56) 1.06 (0.71–1.41)
CST, corticospinal tract; IC, internal capsule.
Get Radiology Tree app to read full this article<
Effect of Brain Location on Diagnostic Performance (Corticospinal Tract Average versus Internal Capsule)
Get Radiology Tree app to read full this article<
Assessment of Methodological Quality
Get Radiology Tree app to read full this article<
Get Radiology Tree app to read full this article<
Assessment of Heterogeneity
Get Radiology Tree app to read full this article<
Publication Bias
Get Radiology Tree app to read full this article<
Get Radiology Tree app to read full this article<
Discussion
Get Radiology Tree app to read full this article<
Get Radiology Tree app to read full this article<
Get Radiology Tree app to read full this article<
Get Radiology Tree app to read full this article<
Get Radiology Tree app to read full this article<
Get Radiology Tree app to read full this article<
Get Radiology Tree app to read full this article<
Acknowledgments
Get Radiology Tree app to read full this article<
Appendix 1
Statistical Approach for Binormal Curve Analysis
Get Radiology Tree app to read full this article<
M∼⎧⎩⎨N(μD¯¯¯,σ2D¯¯¯):nondiseasedN(μD,σ2D):diseased M
∼
{
N
(
μ
D
¯
,
σ
D
¯
2
)
:
nondiseased
N
(
μ
D
,
σ
D
2
)
:
diseased
Get Radiology Tree app to read full this article<
Get Radiology Tree app to read full this article<
sp(c)=P(MD¯¯¯<c)=Φ(c−μD¯¯¯σ)se(c)=P(MD≥c)=1−Φ(c−μD¯¯¯σ) s
p
(
c
)
=
P
(
M
D
¯
<
c
)
=
Φ
(
c
−
μ
D
¯
σ
)
s
e
(
c
)
=
P
(
M
D
≥
c
)
=
1
−
Φ
(
c
−
μ
D
¯
σ
)
Get Radiology Tree app to read full this article<
Get Radiology Tree app to read full this article<
c=μD¯¯¯+μD2 c
=
μ
D
¯
+
μ
D
2
Get Radiology Tree app to read full this article<
Supplementary data
Get Radiology Tree app to read full this article<
Get Radiology Tree app to read full this article<
References
1. Ghadge G.D., Slusher B.S., Bodner A., et. al.: Glutamate carboxypeptidase II inhibition protects motor neurons from death in familial amyotrophic lateral sclerosis models. Proc Natl Acad Sci U S A 2003; 100: pp. 9554-9559.
2. Turner M.R., Kiernan M.C., Leigh P.N., et. al.: Biomarkers in amyotrophic lateral sclerosis. Lancet Neurol 2009; 8: pp. 94-109.
3. Worms P.M.: The epidemiology of motor neuron diseases: a review of recent studies. J Neurol Sci 2001; 191: pp. 3-9.
4. Eisen A., Schulzer M., MacNeil M., et. al.: Duration of amyotrophic lateral sclerosis is age dependent. Muscle Nerve 1993; 16: pp. 27-32.
5. Zoccolella S., Beghi E., Palagano G., et. al.: Predictors of delay in the diagnosis and clinical trial entry of amyotrophic lateral sclerosis patients: a population-based study. J Neurol Sci 2006; 250: pp. 45-49.
6. Kaufmann P., Mitsumoto H.: Amyotrophic lateral sclerosis: objective upper motor neuron markers. Curr Neurol Neurosci Rep 2002; 2: pp. 55-60.
7. Chenevert T.L., Brunberg J.A., Pipe J.G.: Anisotropic diffusion in human white matter: demonstration with MR techniques in vivo. Radiology 1990; 177: pp. 401-405.
8. Turner M.R.: MRI as a frontrunner in the search for amyotrophic lateral sclerosis biomarkers?. Biomark Med 2011; 5: pp. 79-81.
9. Pierpaoli C., Basser P.J.: Toward a quantitative assessment of diffusion anisotropy. Magn Reson Med 1996; 36: pp. 893-906.
10. Nucifora P.G., Verma R., Lee S.K., et. al.: Diffusion-tensor MR imaging and tractography: exploring brain microstructure and connectivity. Radiology 2007; 245: pp. 367-384.
11. Turner M.R., Grosskreutz J., Kassubek J., et. al.: Towards a neuroimaging biomarker for amyotrophic lateral sclerosis. Lancet Neurol 2011; 10: pp. 400-403.
12. Whiting P., Rutjes A.W., Reitsma J.B., et. al.: The development of QUADAS: a tool for the quality assessment of studies of diagnostic accuracy included in systematic reviews. BMC Med Res Methodol 2003; 3: pp. 25.
13. Brooks B.R., Miller R.G., Swash M., et. al.: El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord 2000; 1: pp. 293-299.
14. Hellmich M., Abrams K.R., Sutton A.J.: Bayesian approaches to meta-analysis of ROC curves. Med Decis Making 1999; 19: pp. 252-264.
15. Perkins N.J., Schisterman E.F.: The Youden Index and the optimal cut-point corrected for measurement error. Biomed J 2005; 47: pp. 428-441.
16. Hasselblad V., Hedges L.V.: Meta-analysis of screening and diagnostic tests. Psychol Bull 1995; 117: pp. 167-178.
17. Abrams K., Sanso B.: Approximate Bayesian inference for random effects meta-analysis. Stat Med 1998; 17: pp. 201-218.
18. Cologne J.B., Breslow N.E.: A small sample simulation study of methods for log odds ratio regression-analysis. Comput Stat Data Anal 1990; 9: pp. 217-235.
19. Feng Z.D., Mcculloch C.E.: Statistical-inference using maximum-likelihood-estimation and the generalized likelihood ratio when the true parameter is on the boundary of the parameter space. Stat Probabil Lett 1992; 13: pp. 325-332.
20. Novielli N., Cooper N.J., Sutton A.J., et. al.: Bayesian model selection for meta-analysis of diagnostic test accuracy data: Application to Ddimer for deep vein thrombosis. Research Synthesis Methods 2010; 1: pp. 226-238.
21. Higgins J.P., Thompson S.G., Deeks J.J., et. al.: Measuring inconsistency in meta-analyses. BMJ 2003; 327: pp. 557-560.
22. Agosta F., Pagani E., Rocca M.A., et. al.: Voxel-based morphometry study of brain volumetry and diffusivity in amyotrophic lateral sclerosis patients with mild disability. Hum Brain Mapping 2007; 28: pp. 1430-1438.
23. Agosta F., Rocca M.A., Valsasina P., et. al.: A longitudinal diffusion tensor MRI study of the cervical cord and brain in amyotrophic lateral sclerosis patients. J Neurol Neurosurg Psychiatry 2009; 80: pp. 53-55.
24. Aoki S., Iwata N.K., Masutani Y., et. al.: Quantitative evaluation of the pyramidal tract segmented by diffusion tensor tractography: feasibility study in patients with amyotrophic lateral sclerosis. Radiat Med 2005; 23: pp. 195-199.
25. Bartels C., Mertens N., Hofer S., et. al.: Callosal dysfunction in amyotrophic lateral sclerosis correlates with diffusion tensor imaging of the central motor system. Neuromuscular Disord 2008; 18: pp. 398-407.
26. Blain C.R., Williams V.C., Johnston C., et. al.: A longitudinal study of diffusion tensor MRI in ALS. Amyotroph Lateral Scler 2007; 8: pp. 348-355.
27. Blain C.R., Brunton S., Williams V.C., et. al.: Differential corticospinal tract degeneration in homozygous ‘D90A’SOD-1 ALS and sporadic ALS. J Neurol Neurosurg Psychiatry 2011; 82: pp. 843-849.
28. Ciccarelli O., Behrens T.E., Altmann D.R., et. al.: Probabilistic diffusion tractography: a potential tool to assess the rate of disease progression in amyotrophic lateral sclerosis. Brain 2006; 129: pp. 1859-1871.
29. Cosottini M., Giannelli M., Siciliano G., et. al.: Diffusion-tensor MR imaging of corticospinal tract in amyotrophic lateral sclerosis and progressive muscular atrophy. Radiology 2005; 237: pp. 258-264.
30. Cosottini M., Giannelli M., Vannozzi F., et. al.: Evaluation of corticospinal tract impairment in the brain of patients with amyotrophic lateral sclerosis by using diffusion tensor imaging acquisition schemes with different numbers of diffusion-weighting directions. J Comput Assist Tomogr 2010; 34: pp. 746-750.
31. Ellis C.M., Simmons A., Jones D.K., et. al.: Diffusion tensor MRI assesses corticospinal tract damage in ALS. Neurology 1999; 53: pp. 1051-1058.
32. Filippini N., Douaud G., Mackay C.E., et. al.: Corpus callosum involvement is a consistent feature of amyotrophic lateral sclerosis. Neurology 2010; 75: pp. 1645-1652.
33. Garcia L.N., Silva A.V., Carrete H., et. al.: [Correlation between corticospinal tract degeneration through magnetic resonance imaging, and functional scale (ALSFRS) in patients with amyotrophic lateral sclerosis]. Arq Neuropsiquiatr 2007; 65: pp. 869-874.
34. Graham J.M., Papadakis N., Evans J., et. al.: Diffusion tensor imaging for the assessment of upper motor neuron integrity in ALS. Neurology 2004; 63: pp. 2111-2119.
35. Hong Y.H., Sung J.J., Kim S.M., et. al.: Diffusion tensor tractography-based analysis of the pyramidal tract in patients with amyotrophic lateral sclerosis. J Neuroimaging 2008; 18: pp. 282-287.
36. Ito M., Watanabe H., Atsuta N., et. al.: Fractional anisotropy values detect pyramidal tract involvement in multiple system atrophy. J Neurol Sci 2008; 271: pp. 40-46.
37. Karlsborg M., Rosenbaum S., Wiegell M.R., et. al.: Corticospinal tract degeneration and possible pathogenesis in ALS evaluated by MR diffusion tensor imaging. Amyotroph Lateral Sc 2004; 5: pp. 136-140.
38. Lombardo F., Frijia F., Bongioanni P., et. al.: Diffusion tensor MRI and MR spectroscopy in long lasting upper motor neuron involvement in amyotrophic lateral sclerosis. Arch Italiennes De Biol 2009; 147: pp. 69-82.
39. Metwalli N.S., Benatar M., Nair G., et. al.: Utility of axial and radial diffusivity from diffusion tensor MRI as markers of neurodegeneration in amyotrophic lateral sclerosis. Brain Res 2010; 1348: pp. 156-164.
40. Nair G., Carew J.D., Usher S., et. al.: Diffusion tensor imaging reveals regional differences in the cervical spinal cord in amyotrophic lateral sclerosis. Neuroimage 2010; 53: pp. 576-583.
41. Nelles M., Block W., Traber F., et. al.: Combined 3T diffusion tensor tractography and H-1-MR spectroscopy in motor neuron disease. Am J Neuroradiol 2008; 29: pp. 1708-1714.
42. Pyra T., Hui B., Hanstock C., et. al.: Combined structural and neurochemical evaluation of the corticospinal tract in amyotrophic lateral sclerosis. Amyotroph Lateral Scler 2010; 11: pp. 157-165.
43. Roccatagliata L., Bonzano L., Mancardi G., et. al.: Detection of motor cortex thinning and corticospinal tract involvement by quantitative MRI in amyotrophic lateral sclerosis. Amyotroph Lateral Scler 2009; 10: pp. 47-52.
44. Sage C.A., Peeters R.R., Gorner A., et. al.: Quantitative diffusion tensor imaging in amyotrophic lateral sclerosis. Neuroimage 2007; 34: pp. 486-499.
45. Schimrigk S.K., Bellenberg B., Schluter M., et. al.: Diffusion tensor imaging-based fractional anisotropy quantification in the corticospinal tract of patients with amyotrophic lateral sclerosis using a probabilistic mixture model. Am J Neuroradiol 2007; 28: pp. 724-730.
46. Senda J., Ito M., Watanabe H., et. al.: Correlation between pyramidal tract degeneration and widespread white matter involvement in amyotrophic lateral sclerosis: a study with tractography and diffusion-tensor imaging. Amyotroph Lateral Scler 2009; 10: pp. 288-294.
47. Valsasina P., Agosta F., Benedetti B., et. al.: Diffusion anisotropy of the cervical cord is strictly associated with disability in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 2007; 78: pp. 480-484.
48. Wang S., Poptani H., Woo J.H., et. al.: Amyotrophic lateral sclerosis: diffusion-tensor and chemical shift MR imaging at 3.0 T. Radiology 2006; 239: pp. 831-838.
49. Wong J.C., Concha L., Beaulieu C., et. al.: Spatial profiling of the corticospinal tract in amyotrophic lateral sclerosis using diffusion tensor imaging. J Neuroimaging 2007; 17: pp. 234-240.
50. Woolley S.C., Zhang Y., Schuff N., et. al.: Neuroanatomical correlates of apathy in ALS using 4 Tesla diffusion tensor MRI. Amyotroph Lateral Scler 2011; 12: pp. 52-58.
51. Yin H., Lim C.C., Ma L., et. al.: Combined MR spectroscopic imaging and diffusion tensor MRI visualizes corticospinal tract degeneration in amyotrophic lateral sclerosis. J Neurol 2004; 251: pp. 1249-1254.
52. Bowen B.C., Pattany P.M., Bradley W.G., et. al.: MR imaging and localized proton spectroscopy of the precentral gyrus in amyotrophic lateral sclerosis. AJNR Am J Neuroradiol 2000; 21: pp. 647-658.
53. Chan S., Shungu D.C., Douglas-Akinwande A., et. al.: Motor neuron diseases: comparison of single-voxel proton MR spectroscopy of the motor cortex with MR imaging of the brain. Radiology 1999; 212: pp. 763-769.
54. Unrath A., Ludolph A.C., Kassubek J.: Brain metabolites in definite amyotrophic lateral sclerosis. A longitudinal proton magnetic resonance spectroscopy study. J Neurol 2007; 254: pp. 1099-1106.
55. Chan S., Kaufmann P., Shungu D.C., et. al.: Amyotrophic lateral sclerosis and primary lateral sclerosis: evidence-based diagnostic evaluation of the upper motor neuron. Neuroimaging Clin N Am 2003; 13: pp. 307-326.
56. Cheung G., Gawel M.J., Cooper P.W., et. al.: Amyotrophic lateral sclerosis: correlation of clinical and MR imaging findings. Radiology 1995; 194: pp. 263-270.
57. Comi G., Rovaris M., Leocani L.: Review neuroimaging in amyotrophic lateral sclerosis. Eur J Neurol 1999; 6: pp. 629-637.
58. Hofmann E., Ochs G., Pelzl A., et. al.: The corticospinal tract in amyotrophic lateral sclerosis: an MRI study. Neuroradiology 1998; 40: pp. 71-75.
59. Karitzky J., Ludolph A.C.: Imaging and neurochemical markers for diagnosis and disease progression in ALS. J Neurol Sci 2001; 191: pp. 35-41.
60. Mushlin A.I., Detsky A.S., Phelps C.E., et. al.: The accuracy of magnetic resonance imaging in patients with suspected multiple sclerosis. The Rochester-Toronto Magnetic Resonance Imaging Study Group. JAMA 1993; 269: pp. 3146-3151.
61. Thornbury J.R., Fryback D.G., Turski P.A., et. al.: Disk-caused nerve compression in patients with acute low-back pain: diagnosis with MR, CT myelography, and plain CT. Radiology 1993; 186: pp. 731-738.
62. Chaudhuri K.R., Crump S., al-Sarraj S., et. al.: The validation of El Escorial criteria for the diagnosis of amyotrophic lateral sclerosis: a clinicopathological study. J Neurol Sci 1995; 129: pp. 11-12.
63. Brooks B.R.: Diagnostic dilemmas in amyotrophic lateral sclerosis. J Neurol Sci 1999; 165: pp. S1-S9.
64. Schrooten M., Smetcoren C., Robberecht W., et. al.: Benefit of the Awaji diagnostic algorithm for amyotrophic lateral sclerosis: a prospective study. Ann Neurol 2011; 70: pp. 79-83.
65. Douglass C.P., Kandler R.H., Shaw P.J., et. al.: An evaluation of neurophysiological criteria used in the diagnosis of motor neuron disease. J Neurol Neurosurg Psychiatry 2010; 81: pp. 646-649.
66. Dickersin K., Min Y.I.: Publication bias: the problem that won’t go away. Ann N Y Acad Sci 1993; 703: pp. 135-146.