Home Hyperpolarized129 Xe Magnetic Resonance Imaging
Post
Cancel

Hyperpolarized129 Xe Magnetic Resonance Imaging

Rationale and Objectives

The objective of this study was to evaluate the tolerability of hyperpolarized 129 Xe gas inhaled from functional residual capacity and magnetic resonance imaging in healthy subjects and those with pulmonary disease.

Materials and Methods

Twelve healthy volunteers (mean age, 59 ± 17 years), seven subjects with asthma (mean age, 47 ± 7 years), 10 subjects with chronic obstructive pulmonary disease (mean age, 74 ± 4 years), three subjects with cystic fibrosis (mean age, 27 ± 10 years), and a single subject with radiation-induced lung injury (age, 66 years) were enrolled and evaluated over 43 visits with 136 anoxic inhalations of 500 mL 129 Xe gas mixed with 500 mL 4 He gas. Oxygen saturation and heart rate were monitored during the breath-hold and imaging; subjects were queried for adverse events (AEs) before and immediately following gas inhalation and for 24 hours after the last dose.

Results

No subjects withdrew from the study or reported serious, hypoxic, or severe AEs. Over the course of 136 dose administrations, two mild AEs (1%) were reported in two different subjects (two of 33 [6%]). One of these AEs (light-headedness) was temporally related and judged as possibly related to 129 Xe administration and resolved without treatment within 2 minutes. Statistically significant but clinically insignificant changes in oxygen saturation and heart rate were observed after inhalation ( P < .001), and both resolved 1 minute later, with no difference between subject groups.

Conclusions

Inhalation of hyperpolarized 129 Xe gas and subsequent magnetic resonance imaging were well tolerated in healthy subjects and ambulatory subjects with obstructive and restrictive pulmonary disease.

Noble gas magnetic resonance imaging (MRI) provides a way to measure static and dynamic gas distribution abnormalities as well as microstructural changes associated with normal lung and pulmonary disease. In recent years, hyperpolarized 3 He functional MRI has been evaluated in a wider variety of pulmonary conditions compared to hyperpolarized 129 Xe MRI because of higher polarizations , a well-established safety profile , and high reproducibility in chronic obstructive pulmonary disease (COPD) , asthma , cystic fibrosis (CF) , and radiation-induced lung injury (RILI) . However, recently, the cost of 3 He gas has increased and the supply has become limited , so translation to clinical use has been slow. This has motivated a recent resurgence in 129 Xe MRI research , because 129 Xe gas is more readily available, and methods have been developed to improve the volume of polarized gas required for research and clinical studies .

Xenon-129 is more lipid and tissue soluble than 3 He , and anaesthetic effects have been quantified using the minimum alveolar concentration, which is approximately 70%, representing the fractional pulmonary xenon gas concentration that results in autonomic nerve sensation blockage in 50% of subjects . There is a long and well-documented history of xenon gas use in pulmonary computed tomography , cerebral blood flow imaging , and lung scintigraphy , but to date, there have been few safety studies that prospectively evaluated the tolerability of hyperpolarized 129 Xe MRI across a wide range of subjects with pulmonary disease . Recently, Driehuys et al reported the tolerability of hyperpolarized 129 Xe gas in healthy volunteers and subjects with COPD using a 1-L 129 Xe (6%–10% polarized) dose inhaled from functional residual capacity (FRC). They reported that 91% of subjects (40 of 44) experienced mild but transient symptoms associated with 129 Xe inhalation, and two subjects experienced extreme dizziness and depressed consciousness. We hypothesized that this adverse event (AE) profile could be improved by reducing the 129 Xe gas dose . We also hypothesized that potential image quality decreases related to the reduced dose could be offset by reducing gas depolarization potential by limiting contact with air and reducing the dead space of the inhalation apparatus. In an extension of the important findings reported by Driehuys et al, we aimed to evaluate the tolerability of a 500-mL inhaled dose of 129 Xe gas mixed with 500-mL 4 He gas in a 1-L total volume from FRC, half the inhaled dose of 129 Xe gas reported by Driehuys et al, in healthy subjects and ambulatory patients with diminished pulmonary function and asthma, COPD, CF, or RILI. Extending previous findings to subjects with a wider range of pulmonary function may help provide a foundation for the potential clinical use of 129 Xe MRI.

Materials and methods

Study Subjects and Design

Get Radiology Tree app to read full this article<

Figure 1, Schedule of assessments. There were no subjects who were lost to follow-up or withdrawn or who could not complete the study. BL, baseline; BP, blood pressure; DLCO, diffusing capacity of carbon monoxide; HP, hyperpolarized; HR, heart rate; MRI, magnetic resonance imaging; P-Xe, after 129 Xe inhalation; R, 1-minute recovery after inhalation; RR, respiratory rate; spO2, oxygen saturation.

Get Radiology Tree app to read full this article<

Subject Monitoring

Get Radiology Tree app to read full this article<

Pulmonary Function Testing

Get Radiology Tree app to read full this article<

Gas Hyperpolarization and Dose Preparation

Get Radiology Tree app to read full this article<

Z=A/(A+B=D+FRC[L]), Z

=

A

/

(

A

+

B

=

D

+

FRC

[

L

]

)

,

where A is the volume of 129 Xe inhaled, B is the volume of 4 He inhaled, and D is the volume of the dead space of the breathing apparatus.

Figure 2, Xenon-129 gas administration schematic. A, anterior; d, diameter; I, inferior; L, length; P, posterior; S, superior.

Get Radiology Tree app to read full this article<

Imaging Breath-hold Maneuver

Get Radiology Tree app to read full this article<

Statistical Methods

Get Radiology Tree app to read full this article<

Results

Get Radiology Tree app to read full this article<

Table 1

Subject Demographics

Parameter All ( n = 33) Healthy Volunteers ( n = 12) Asthma ( n = 7) COPD ( n = 10) CF ( n = 3) RILI ( n = 1) Age (y) 58 ± 18 (20–79) 59 ± 17 (26–79) 47 ± 7 (36–58) 74 ± 4 (66–79) 27 ± 10 (20–38) 66 Men 20 6 4 8 2 1 BMI (kg/m 2 ) 25 ± 4 (18–33) 24 ± 3 (20–29) 27 ± 4 (20–33) 25 ± 5 (18–32) 24 ± 4 (21–29) 31 FEV 1%pred 80 ± 27 (27–129) 105 ± 12 (92–129) 76 ± 6 (70–86) 58 ± 24 (27–107) 57 ± 11 (49–70) 70 FEV 1 /FVC 63 ± 16 (26–91) 76 ± 6 (68–91) 67 ± 7 (54–76) 45 ± 14 (26–68) 59 ± 14 (47–75) 80 RV %pred 135 (43 (84–255) 105 ± 16 (84–133) 131 ± 10 (118–146) 159 ± 46 (86–229) 201 ± 47 (171–255) 101 RV/TLC 0.42 ± 0.12 (0.23–0.77) 0.35 ± 0.09 (0.23–0.53) 0.37 ± 0 (0.3–0.4) 0.52 ± 0.14 (0.27–0.77) 0.43 ± 0.03 (0.4–0.46) 0.45 IC %pred 99 ± 27 (27–170) 116 ± 22 (88–170) 105 ± 13 (93–129) 85 ± 31 (27–128) 91 ± 19 (75–112) 61 FRC %pred 116 ± 31 (80–201) 99 ± 14 (80–120) 105 ± 17 (84–130) 141 ± 35 (102–201) 130 ± 38 (100–173) 93

BMI, body mass index; CF, cystic fibrosis; COPD, chronic obstructive pulmonary disease; FEV 1 , forced expiratory volume in 1 second; FRC, functional residual capacity; FVC, forced vital capacity; IC, inspiratory capacity; % pred , percentage predicted; RILI, radiation-induced lung injury; RV, residual volume; TLC, total lung capacity.

Get Radiology Tree app to read full this article<

Get Radiology Tree app to read full this article<

Figure 3, Xenon-129 magnetic resonance imaging in a representative healthy volunteer and subjects with chronic obstructive pulmonary disease (COPD), cystic fibrosis (CF), asthma, and radiation-induced lung injury (RILI).

Get Radiology Tree app to read full this article<

Get Radiology Tree app to read full this article<

Table 2

Subject Clinical Visits and Total 129 Xe Doses

Parameter All ( n = 33) Healthy Volunteers ( n = 12) Asthma ( n = 7) COPD ( n = 10) CF ( n = 3) RILI ( n = 1) Number of visits 1 26 10 7 5 3 1 ≥2 7 2 0 5 0 0 Number of 129 Xe Doses 2–4 27 10 7 6 3 1 5–9 4 0 0 4 0 0 ≥10 2 2 0 0 0 0

CF, cystic fibrosis; COPD, chronic obstructive pulmonary disease; RILI, radiation-induced lung injury.

Get Radiology Tree app to read full this article<

Get Radiology Tree app to read full this article<

Table 3

Actual and Theoretical Mean Fractional Concentrations of 129 Xe for Subject Groups

Subject Group Volumes (L) Mean Fractional Concentrations 129 Xe FRC RV Actual ∗ Theoretical † Healthy volunteers ( n = 12) 0.48 ± 0.06 3.15 ± 0.54 1.99 ± 0.40 0.12 ± 0.02 0.16 ± 0.03 Asthma ( n = 7) 0.50 ± 0.00 3.37 ± 0.60 2.39 ± 0.19 0.12 ± 0.02 0.15 ± 0.01 COPD ( n = 10) 0.50 ± 0.00 4.91 ± 1.06 3.91 ± 0.99 0.09 ± 0.02 0.11 ± 0.02 CF ( n = 3) 0.50 ± 0.00 4.04 ± 1.01 2.92 ± 0.38 0.10 ± 0.02 0.13 ± 0.01 RILI ( n = 1) 0.50 ± 0.00 2.95 ± 0.00 2.16 ± 0.00 0.13 ± 0.0 0.16 ± 0.0 All ( n = 33) 0.50 ± 0.01 3.68 ± 0.64 2.67 ± 0.39 0.11 ± 0.02 0.14 ± 0.03

CF, cystic fibrosis; COPD, chronic obstructive pulmonary disease; FRC, functional residual capacity; RILI, radiation-induced lung injury; RV, residual volume.

Get Radiology Tree app to read full this article<

Get Radiology Tree app to read full this article<

FLOAT NOT FOUND

Get Radiology Tree app to read full this article<

Get Radiology Tree app to read full this article<

Table 4

All Adverse Events

Type All ( n = 33) Healthy Volunteers ( n = 12) Asthma ( n = 7) COPD ( n = 10) CF ( n = 3) RILI ( n = 1) Total 2 0 1 1 0 0 Serious 0 0 0 0 0 0 Hypoxic 0 0 0 0 0 0 Withdrawn 0 0 0 0 0 0 Intensity Mild 0 0 1 ∗ 1 † 0 0 Moderate 0 0 0 0 0 0 Severe 0 0 0 0 0 0 Relationship 129 Xe related 1 0 1 0 0 0 Unrelated 1 0 0 1 0 0

CF, cystic fibrosis; COPD, chronic obstructive pulmonary disease; RILI, radiation-induced lung injury.

Get Radiology Tree app to read full this article<

Get Radiology Tree app to read full this article<

Get Radiology Tree app to read full this article<

Get Radiology Tree app to read full this article<

Figure 4, Oxygen saturation (spO2) and heart rate (HR) at baseline (BL), after 129 Xe inhalation (P-Xe), and 1-minute recovery (R). Significant differences were seen between baseline and postinhalation ( P < .001 for spO 2 and P < .001 for HR). No statistically significant differences were seen between baseline and recovery ( P = 1.00 for spO2 and P = .06 for HR).

Table 5

SpO 2 and HR Changes Following Inhalation of 129 Xe

Parameter Healthy Volunteers ( n = 12) Asthma ( n = 7) COPD ( n = 10) CF ( n = 3) RILI ( n = 1) SpO 2 (%) Mean decrease after 129 Xe inhalation from BL −3 ± 1.4 −3 ± 2.3 −4 ± 1.4 −6 ± 2.1 −11 ± 0.7 Mean recovery from BL as a difference 0 ± 0.7 0 ± 1.2 0 ± 0.7 −1 ± 0.5 −1 ± 0.0 HR (beats/min) Mean decrease after 129 Xe inhalation from BL 1 ± 4.1 2 ± 3.8 0 ± 3.4 −2 ± 7.1 1 ± 5.6 Mean recovery from BL as a difference 1 ± 4.5 1 ± 4.6 −1 ± 3.1 −2 ± 5.4 1 ± 3.5

BL, baseline; CF, cystic fibrosis; COPD, chronic obstructive pulmonary disease; HR, heart rate; RILI, radiation-induced lung injury; SpO 2 , oxygen saturation.

P = .858 determined with analysis of variance ( P < .05 indicates significance).

Get Radiology Tree app to read full this article<

Discussion

Get Radiology Tree app to read full this article<

Get Radiology Tree app to read full this article<

Get Radiology Tree app to read full this article<

Get Radiology Tree app to read full this article<

Get Radiology Tree app to read full this article<

Conclusions

Get Radiology Tree app to read full this article<

Acknowledgments

Get Radiology Tree app to read full this article<

Appendix

Get Radiology Tree app to read full this article<

Table A1

Actual and Theoretical Fractional Xenon Concentrations for Every 129 Xe Subject Dose

Subject Visit Volumes (L) Fractional 129 Xe Concentration 129 Xe FRC RV Actual ∗ Theoretical † Healthy volunteers ( n = 12) 1 1 0.5 2.93 1.53 0.13 0.20 1 1 0.5 2.93 1.53 0.13 0.20 1 1 0.5 2.93 1.53 0.13 0.20 1 1 0.5 2.93 1.53 0.13 0.20 1 2 0.5 2.93 1.53 0.13 0.20 1 2 0.5 2.93 1.53 0.13 0.20 1 2 0.5 2.93 1.53 0.13 0.20 1 2 0.5 2.93 1.53 0.13 0.20 1 3 0.25 2.93 1.53 0.06 0.10 1 3 0.5 2.93 1.53 0.13 0.20 1 3 0.35 2.93 1.53 0.09 0.14 1 3 0.5 2.93 1.53 0.13 0.20 1 3 0.5 2.93 1.53 0.13 0.20 2 1 0.5 3.74 1.99 0.11 0.17 2 1 0.5 3.74 1.99 0.11 0.17 2 1 0.5 3.74 1.99 0.11 0.17 2 2 0.25 3.74 1.99 0.05 0.08 2 2 0.5 3.74 1.99 0.11 0.17 2 2 0.3 3.74 1.99 0.06 0.10 2 3 0.5 3.74 1.99 0.11 0.17 2 3 0.5 3.74 1.99 0.11 0.17 2 3 0.5 3.74 1.99 0.11 0.17 2 3 0.5 3.74 1.99 0.11 0.17 2 4 0.5 3.74 1.99 0.11 0.17 2 4 0.5 3.74 1.99 0.11 0.17 2 4 0.5 3.74 1.99 0.11 0.17 3 1 0.5 2.82 2.65 0.13 0.14 3 1 0.5 2.82 2.65 0.13 0.14 3 1 0.5 2.82 2.65 0.13 0.14 3 1 0.5 2.82 2.65 0.13 0.14 4 1 0.5 2.55 2.20 0.14 0.16 4 1 0.5 2.55 2.20 0.14 0.16 4 1 0.5 2.55 2.20 0.14 0.16 4 1 0.5 2.55 2.20 0.14 0.16 5 1 0.5 3.37 2.18 0.11 0.16 5 1 0.5 3.37 2.18 0.11 0.16 5 1 0.5 3.37 2.18 0.11 0.16 6 1 0.5 2.55 2.06 0.14 0.16 6 1 0.5 2.55 2.06 0.14 0.16 6 1 0.5 2.55 2.06 0.14 0.16 6 1 0.5 2.55 2.06 0.14 0.16 7 1 0.5 3.23 1.77 0.12 0.18 7 1 0.5 3.23 1.77 0.12 0.18 8 1 0.5 2.48 1.95 0.14 0.17 8 1 0.5 2.48 1.95 0.14 0.17 9 1 0.5 3.38 2.62 0.11 0.14 9 1 0.5 3.38 2.62 0.11 0.14 10 1 0.5 4.55 2.21 0.09 0.16 10 1 0.5 4.55 2.21 0.09 0.16 11 1 0.5 2.31 1.30 0.15 0.22 11 1 0.5 2.31 1.30 0.15 0.22 12 1 0.5 3.23 2.93 0.12 0.13 12 1 0.5 3.23 2.93 0.12 0.13 Mean ± SD 0.48 ± 0.06 3.15 ± 0.54 1.99 ± 0.40 0.12 ± 0.02 0.16 ± 0.03 Asthma ( n = 7) 13 1 0.5 2.78 2.17 0.13 0.16 13 1 0.5 2.78 2.17 0.13 0.16 13 1 0.5 2.78 2.17 0.13 0.16 13 1 0.5 2.78 2.17 0.13 0.16 14 1 0.5 ND ND ND ND 14 1 0.5 ND ND ND ND 14 1 0.5 ND ND ND ND 14 1 0.5 ND ND ND ND 15 1 0.5 3.27 2.38 0.12 0.15 15 1 0.5 3.27 2.38 0.12 0.15 15 1 0.5 3.27 2.38 0.12 0.15 15 1 0.5 3.27 2.38 0.12 0.15 16 1 0.5 2.67 2.18 0.14 0.16 16 1 0.5 2.67 2.18 0.14 0.16 16 1 0.5 2.67 2.18 0.14 0.16 16 1 0.5 2.67 2.18 0.14 0.16 17 1 0.5 3.93 2.52 0.10 0.14 17 1 0.5 3.93 2.52 0.10 0.14 17 1 0.5 3.93 2.52 0.10 0.14 17 1 0.5 3.93 2.52 0.10 0.14 18 1 0.5 4.30 2.42 0.09 0.15 18 1 0.5 4.30 2.42 0.09 0.15 18 1 0.5 4.30 2.42 0.09 0.15 18 1 0.5 4.30 2.42 0.09 0.15 19 1 0.5 3.25 2.69 0.12 0.14 19 1 0.5 3.25 2.69 0.12 0.14 19 1 0.5 3.25 2.69 0.12 0.14 19 1 0.5 3.25 2.69 0.12 0.14 Mean ± SD 0.50 ± 0.00 3.37 ± 0.60 2.39 ± 0.19 0.12 ± 0.02 0.15 ± 0.01 COPD ( n = 10) 20 1 0.5 3.95 3.64 0.10 0.11 20 1 0.5 3.95 3.64 0.10 0.11 20 2 0.5 3.95 3.64 0.10 0.11 20 2 0.5 3.95 3.64 0.10 0.11 21 1 0.5 4.63 4.00 0.09 0.10 21 1 0.5 4.63 4.00 0.09 0.10 21 1 0.5 4.63 4.00 0.09 0.10 21 2 0.5 4.63 4.00 0.09 0.10 21 2 0.5 4.63 4.00 0.09 0.10 22 1 0.5 5.37 3.78 0.08 0.10 22 1 0.5 5.37 3.78 0.08 0.10 22 1 0.5 5.37 3.78 0.08 0.10 22 1 0.5 5.37 3.78 0.08 0.10 22 2 0.5 5.37 3.78 0.08 0.10 22 2 0.5 5.37 3.78 0.08 0.10 23 1 0.5 3.95 3.65 0.10 0.11 23 1 0.5 3.95 3.65 0.10 0.11 23 1 0.5 3.95 3.65 0.10 0.11 23 1 0.5 3.95 3.65 0.10 0.11 23 2 0.5 3.95 3.65 0.10 0.11 23 2 0.5 3.95 3.65 0.10 0.11 24 1 0.5 5.79 5.03 0.07 0.08 24 1 0.5 5.79 5.03 0.07 0.08 24 1 0.5 5.79 5.03 0.07 0.08 24 1 0.5 5.79 5.03 0.07 0.08 24 2 0.5 5.79 5.03 0.07 0.08 24 2 0.5 5.79 5.03 0.07 0.08 25 1 0.5 6.56 5.16 0.07 0.08 25 1 0.5 6.56 5.16 0.07 0.08 25 1 0.5 6.56 5.16 0.07 0.08 25 1 0.5 6.56 5.16 0.07 0.08 26 1 0.5 3.16 2.60 0.12 0.14 26 1 0.5 3.16 2.60 0.12 0.14 26 1 0.5 3.16 2.60 0.12 0.14 26 1 0.5 3.16 2.60 0.12 0.14 27 1 0.5 6.56 5.39 0.07 0.08 27 1 0.5 6.56 5.39 0.07 0.08 27 1 0.5 6.56 5.39 0.07 0.08 27 1 0.5 6.56 5.39 0.07 0.08 28 1 0.5 4.76 3.39 0.09 0.11 28 1 0.5 4.76 3.39 0.09 0.11 28 1 0.5 4.76 3.39 0.09 0.11 28 1 0.5 4.76 3.39 0.09 0.11 29 1 0.5 4.26 2.05 0.09 0.16 29 1 0.5 4.26 2.05 0.09 0.16 29 1 0.5 4.26 2.05 0.09 0.16 29 1 0.5 4.26 2.05 0.09 0.16 Mean ± SD 0.50 ± 0.00 4.91 ± 1.06 3.91 ± 0.99 0.09 ± 0.02 0.11 ± 0.02 CF ( n = 3) 30 1 0.5 3.90 3.01 0.10 0.12 30 1 0.5 3.90 3.01 0.10 0.12 31 1 0.5 2.98 2.45 0.13 0.14 31 1 0.5 2.98 2.45 0.13 0.14 32 1 0.5 5.23 3.29 0.08 0.12 32 1 0.5 5.23 3.29 0.08 0.12 Mean ± SD 0.50 ± 0.00 4.04 ± 1.01 2.92 ± 0.38 0.10 ± 0.02 0.13 ± 0.01 RILI ( n = 1) 33 1 0.5 2.95 2.16 0.13 0.16 33 1 0.5 2.95 2.16 0.13 0.16 Mean ± SD 0.50 ± 0.00 2.95 ± 0.00 2.16 ± 0.00 0.13 ± 0.0 0.16 ± 0.0 Mean total 0.50 ± 0.01 3.68 ± 0.64 2.67 ± 0.39 0.11 ± 0.02 0.14 ± 0.03

CF, cystic fibrosis; COPD, chronic obstructive pulmonary disease; FRC, functional residual capacity; RILI, radiation-induced lung injury; RV, residual volume; SD, standard deviation.

Get Radiology Tree app to read full this article<

Get Radiology Tree app to read full this article<

Get Radiology Tree app to read full this article<

Get Radiology Tree app to read full this article<

References

  • 1. Driehuys B., Martinez-Jimenez S., Cleveland Z.I., et. al.: Chronic obstructive pulmonary disease: safety and tolerability of hyperpolarized 129 Xe MR imaging in healthy volunteers and patients. Radiology 2012; 262: pp. 279-289.

  • 2. Patz S., Hersman F.W., Muradian I., et. al.: Hyperpolarized 129 Xe MRI: a viable functional lung imaging modality?. Eur J Radiol 2007; 64: pp. 335-344.

  • 3. Fain S.B., Korosec F.R., Holmes J.H., et. al.: Functional lung imaging using hyperpolarized gas MRI. J Magn Reson Imaging 2007; 25: pp. 910-923.

  • 4. Mosbah K., Ruiz-Cabello J., Berthezene Y., et. al.: Aerosols and gaseous contrast agents for magnetic resonance imaging of the lung. Contrast Media Mol Imaging 2008; 3: pp. 173-190.

  • 5. Cleveland Z.I., Cofer G.P., Metz G., et. al.: Hyperpolarized Xe MR imaging of alveolar gas uptake in humans. PLoS One 2010; 5: pp. e12192.

  • 6. Mugler J.P., Altes T.A., Ruset I.C., et. al.: Simultaneous magnetic resonance imaging of ventilation distribution and gas uptake in the human lung using hyperpolarized xenon-129. Proc Natl Acad Sci U S A 2010; 107: pp. 21707-21712.

  • 7. Moller H.E., Chen X.J., Saam B., et. al.: MRI of the lungs using hyperpolarized noble gases. Magn Reson Med 2002; 47: pp. 1029-1051.

  • 8. Lutey B.A., Lefrak S.S., Woods J.C., et. al.: Hyperpolarized 3 He MR imaging: physiologic monitoring observations and safety considerations in 100 consecutive subjects. Radiology 2008; 248: pp. 655-661.

  • 9. de Lange E.E., Mugler J.P., Brookeman J.R., et. al.: Lung air spaces: MR imaging evaluation with hyperpolarized 3 He gas. Radiology 1999; 210: pp. 851-857.

  • 10. Kauczor H.U., Ebert M., Kreitner K.F., et. al.: Imaging of the lungs using 3 He MRI: preliminary clinical experience in 18 patients with and without lung disease. J Magn Reson Imaging 1997; 7: pp. 538-543.

  • 11. Kirby M., Mathew L., Wheatley A., et. al.: Chronic obstructive pulmonary disease: longitudinal hyperpolarized 3 He MR imaging. Radiology 2010; 256: pp. 280-289.

  • 12. Choy S., Wheatley A., McCormack D.G., et. al.: Hyperpolarized 3 He magnetic resonance imaging-derived pulmonary pressure-volume curves. J Appl Physiol 2010; 109: pp. 574-585.

  • 13. Mathew L., Kirby M., Etemad-Rezai R., et. al.: Hyperpolarized 3 He magnetic resonance imaging: preliminary evaluation of phenotyping potential in chronic obstructive pulmonary disease. Eur J Radiol 2011; 79: pp. 140-146.

  • 14. Mathew L., Evans A., Ouriadov A., et. al.: Hyperpolarized 3 He magnetic resonance imaging of chronic obstructive pulmonary disease: reproducibility at 3.0 Tesla. Acad Radiol 2008; 15: pp. 1298-1311.

  • 15. Evans A., McCormack D., Ouriadov A., et. al.: Anatomical distribution of 3 He apparent diffusion coefficients in severe chronic obstructive pulmonary disease. J Magn Reson Imaging 2007; 26: pp. 1537-1547.

  • 16. de Lange E.E., Altes T.A., Patrie J.T., et. al.: Evaluation of asthma with hyperpolarized helium-3 MRI: correlation with clinical severity and spirometry. Chest 2006; 130: pp. 1055-1062.

  • 17. Altes T.A., Powers P.L., Knight-Scott J., et. al.: Hyperpolarized 3 He MR lung ventilation imaging in asthmatics: preliminary findings. J Magn Reson Imaging 2001; 13: pp. 378-384.

  • 18. Fain S.B., Gonzalez-Fernandez G., Peterson E.T., et. al.: Evaluation of structure-function relationships in asthma using multidetector CT and hyperpolarized He-3 MRI. Acad Radiol 2008; 15: pp. 753-762.

  • 19. Tzeng Y.S., Lutchen K., Albert M.: The difference in ventilation heterogeneity between asthmatic and healthy subjects quantified using hyperpolarized 3 He MRI. J Appl Physiol 2009; 106: pp. 813-822.

  • 20. Mentore K., Froh D.K., de Lange E.E., et. al.: Hyperpolarized HHe 3 MRI of the lung in cystic fibrosis: assessment at baseline and after bronchodilator and airway clearance treatment. Acad Radiol 2005; 12: pp. 1423-1429.

  • 21. Koumellis P., van Beek E.J., Woodhouse N., et. al.: Quantitative analysis of regional airways obstruction using dynamic hyperpolarized 3 He MRI-preliminary results in children with cystic fibrosis. J Magn Reson Imaging 2005; 22: pp. 420-426.

  • 22. Donnelly L.F., MacFall J.R., McAdams H.P., et. al.: Cystic fibrosis: combined hyperpolarized 3 He-enhanced and conventional proton MR imaging in the lung—preliminary observations. Radiology 1999; 212: pp. 885-889.

  • 23. Mathew L., Gaede S., Wheatley A., et. al.: Detection of longitudinal lung structural and functional changes after diagnosis of radiation-induced lung injury using hyperpolarized 3 He magnetic resonance imaging. Med Phys 2010; 37: pp. 22-31.

  • 24. Ireland R.H., Bragg C.M., McJury M., et. al.: Feasibility of image registration and intensity-modulated radiotherapy planning with hyperpolarized helium-3 magnetic resonance imaging for non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 2007; 68: pp. 273-281.

  • 25. Mugler J.P., Driehuys B., Brookeman J.R., et. al.: MR imaging and spectroscopy using hyperpolarized 129 Xe gas: preliminary human results. Magn Reson Med 1997; 37: pp. 809-815.

  • 26. Carlson A.P., Brown A.M., Zager E., et. al.: Xenon-enhanced cerebral blood flow at 28% xenon provides uniquely safe access to quantitative, clinically useful cerebral blood flow information: a multicenter study. AJNR Am J Neuroradiol 2011; 32: pp. 1315-1320.

  • 27. Ruset I.C., Ketel S., Hersman F.W.: Optical pumping system design for large production of hyperpolarized. Phys Rev Lett 2006; 96: pp. 053002.

  • 28. Honda N., Osada H., Watanabe W., et. al.: Imaging of ventilation with dual-energy CT during breath hold after single vital-capacity inspiration of stable xenon. Radiology 2012; 262: pp. 262-268.

  • 29. Chae E.J., Song J.W., Seo J.B., et. al.: Clinical utility of dual-energy CT in the evaluation of solitary pulmonary nodules: initial experience. Radiology 2008; 249: pp. 671-681.

  • 30. Chae E.J., Seo J.B., Goo H.W., et. al.: Xenon ventilation CT with a dual-energy technique of dual-source CT: initial experience. Radiology 2008; 248: pp. 615-624.

  • 31. Suga K.: Technical and analytical advances in pulmonary ventilation SPECT with xenon-133 gas and Tc-99m-Technegas. Ann Nucl Med 2002; 16: pp. 303-310.

  • 32. Kirby M., Heydarian M., Svenningsen S., et. al.: Hyperpolarized 3 He magnetic resonance functional imaging semiautomated segmentation. Acad Radiol 2012; 19: pp. 141-152.

  • 33. Kirby M., Svenningsen S., Ahmed H., et. al.: Quantitative evaluation of hyperpolarized helium-3 magnetic resonance imaging of lung function variability in cystic fibrosis. Acad Radiol 2011; 18: pp. 1006-1013.

  • 34. Hersman F.W., Ruset I.C., Ketel S., et. al.: Large production system for hyperpolarized 129 Xe for human lung imaging studies. Acad Radiol 2008; 15: pp. 683-692.

  • 35. Parraga G., Ouriadov A., Evans A., et. al.: Hyperpolarized 3 He ventilation defects and apparent diffusion coefficients in chronic obstructive pulmonary disease: preliminary results at 3.0 Tesla. Invest Radiol 2007; 42: pp. 384-391.

This post is licensed under CC BY 4.0 by the author.